Exploring the potential of waste fish scales as feed for livestock

Authors

  • Marian Asantewah Nkansah Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana
  • Francis Opoku Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana
  • Edem Yigah Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana

Abstract

Livestock and poultry farming in West Africa and many other world regions are suffering from rising feed costs, particularly protein components, which are scarcely available for village farming and small-scale farming. This research aimed to determine the proximate composition and heavy metal concentration of the scales of Tilapia and Dentex species. The nutritional parameters considered were ash, moisture, protein, crude fibre, fat and carbohydrates and were determined following standard procedures of the Association of Official Analytical Chemists. The proximate compositions of both scales on dry weight basis were 48.76 - 59.66% d.w. Ash, 29.38 - 40.41% protein, 6.55 - 8.56% moisture, 1.98 - 13.81% carbohydrates and 0.29-0.59% fat. Ash, fat and carbohydrates contents were relatively higher in the Dentex scales, whereas the protein and moisture contents were higher in the Tilapia scales. Crude fibre contents in both scales were below detection. The energy in the Tilapia scales (172.17 kcal/100g) was greater than the Dentex scales (138.07 kcal/100g). Pb, As and Cd levels were relatively higher in the Dentex scales. From the nutritional data obtained, it can be inferred that the Tilapia and Dentex species scales would make suitable feed ingredients with adequate supplementation of some energy giving constituents, particularly carbohydrates and fats. However, based on a comparative assessment, it can be deduced that the scales of Tilapia sp. have a significantly higher nutritional worth than the scales of Dentex sp.

References

M. Babiker, C. Kijora, S. Abbas, J. Danier, Int. J. Poult. Sci., 8, 355 (2009).

M. Kenis, N. Koné, C. Chrysostome, E. Devic, G. Koko, V. Clottey, S. Nacambo, G. Mensah, Entomologia, 2, 107 (2014).

H. Van Zanten, B. Meerburg, P. Bikker, M. Herrero, I. De Boer, Animal, 10, 547 (2016).

Z. Lenkiewicz, M. Webster, How to convert organic waste into biogas a step-by-step guide, Chartered Institution of Wastes Management, UK (2017).

M. Birhan, T. Adugna, Middle East J. Sci. Res., 21, 616 (2014).

G. S. Becker, Congressional Research Service, (2008).

A. Freibauer, E. Mathijs, G. Brunori, Z. Damianova, E. Faroult, J. G. i Gomis, L. O′ Brien, S. Treyer, EuroChoices, 10, 38 (2011).

European Union, Sustainable, Safe and Nutritious Food- New nutrient sources. Business Innovation Observatory Contract No 190/PP/ENT/CIP/12/C/N03C01, European Union, Luxembourg: Probst (2015).

B. Basu, A. K. Banik, J. Sci. Ind. Res., 64, 293 (2005).

C. Nellemann, M. MacDevette, The environmental food crisis: the environment's role in averting future food crises: a UNEP rapid response assessment, UNEP/Earthprint (2009).

M. Archer, Fish waste production in the United Kingdom: the quantities produced and opportunities for better utilisation, Sea Fish Industry Authority, UK (2001).

E. Huang, Water Res, 30, 1985 (2007).

E. Gojayev, N. Nabiyev, M. Ramazanov, K. S. Kahramanov, S. V. Alieva, A. Ismailov, Phys. Sci. Int. J., 45 (2015).

C. H. Martin, P. C. Wainwright, PLoS ONE, 8, e71164 (2013).

D. G. Snyder, H. W. Nilson, Nutritive Value of Pollock Fish Scales as Determined by Rat Feeding Tests, US Department of the Interior, Fish and Wildlife Service (1959).

Food and Agriculture Association, World Review of Fisheries and Aquaculture, Food and Agriculture Association (2012).

S. Jangu, O. S. Brraich, Int. J. Eng. Res., 5, 637 (2014).

J. F. Akintujoye, C. I. Anumudu, H. O. Awobode, J. Appl. Sci. Environ. Manage., 17, 291 (2013).

A. Valavanidis, T. Vlachogianni, Environ. Toxicol. Pharmacol, 21, 241 (2010).

R. Voegborlo, A. El-Methnani, M. Abedin, Food Chem., 67, 341 (1999).

R. Gumisiriza, A. M. Mshandete, M. S. Rubindamayugi, F. Kansiime, A. K. Kivaisi, Afr. J. Environ. Sci. Technol., 3, 013 (2009).

P. Kittiphattanabawon, S. Benjakul, W. Visessanguan, T. Nagai, M. Tanaka, Food Chem., 89, 363 (2005).

M. E. López-Mosquera, E. Fernández-Lema, R. Villares, R. Corral, B. Alonso, C. Blanco, Procedia Environ. Sci., 9, 113 (2011).

A. Bozzano, F. Sardà, ICES J. Mar. Sci., 59, 15 (2002).

F. B. Rebah, N. Miled, 3 Biotech, 3, 255 (2013).

S. A. Rahman, H. Zambry, S. Basha, S. Kamarzaman, A. J. K. Chowdhury, J. Appl. Pharm. Sci., 3, 045 (2013).

Ghana Administrative Divisions, Perry-Castaneda Library Map Collection, University of Texas, Texas (2007).

D. Neilsen, Makola Market [http://www.timeout.com/accra/shopping/makola-market].

AOAC, Official Method of Analysis 15th Edition, Association of Official Analytical Chemists, Washington DC (1990).

S. Mahboob, S. Haider, S. Sultana, K. Al-Ghanim, F. Al-Misned, H. Al-Balawi, Z. Ahmad, J. Anim. Plant Sci., 24, 1802 (2014).

M. A. Naqvi, S. Tahir, A. Gilani, J. Glob. Innov. Agric. Soc. Sci, 2, 171 (2014).

I. E. Daniel, Int. J. Multidiscip. Acad. Res., 3, 9 (2015).

D. A. Courtemanche, J. Whoriskey, Frederick G, V. Bujold, R. A. Curry, Can. J. Fish. Aquat. Sci., 63, 995 (2006).

M. Okuda, M. Takeguchi, M. Tagaya, T. Tonegawa, A. Hashimoto, N. Hanagata, T. Ikoma, Micron, 40, 665 (2009).

A. Aberoumand, J. Agric. Technol., 8, 917 (2012).

A. Olagunju, A. Muhammad, S. Bello, A. Mohammed, H. A. Mohammed, K. Tmahmoud, World J. Life Sci. Med. Res., 2, 16 (2012).

C. Choong, Innovation Magazine, 12, 78 (2013).

Z. Masood, R. Yasmeen, M. S. Haider, O. M. Tarar, A. Ullah, M. Bilal, M. Y. Hossain, Biol. Forum., 7, 410 (2015).

Y. Suksong, Basic of Proximate Analysis and New Soxtec 8000 and Hydrocap 8000 [http://www.sithiphorn.com/2555/upload_files/].

W. Aalbersberg, Food composition, The University of the South Pacific Press (1990).

World Health organization, Safety evaluation of certain food additives series, Cambridge University Press, Cambridge (2002).

F. Abagale, D. Sarpong, J. Ojediran, R. Osei-Agyemang, A. Shaibu, P. Birteeb, (2013).

J. C. McGeer, K. V. Brix, J. M. Skeaff, D. K. DeForest, S. I. Brigham, W. J. Adams, A. Green, Environ. Toxicol. Chem., 22, 1017 (2003).

FAO, Fish Feed Formulation And Production, Food and Agriculture Organization of the United Nations, Rome, Italy (1990).

S. S. Nielsen, in Food analysis laboratory manual, Springer, 2010, pp. 17.

U. K. Saha, L. S. Sonon, D. W. Hancock, N. S. Hill, L. Stewart, G. L. Heusner, D. E. Kissel, in University of Georgia Cooperative Extension Bulletin 1367, University of Georgia, USA, 2010.

I. Fernandez-Ruiz, P. Puchalska, C. A. Narasimhulu, B. Sengupta, S. Parthasarathy, J. Lipid Res., 57, 574 (2016).

L. Chiba, in Section 12: Poultry nutrition and feeding, 2014, pp. 410.

Merck Vertirinary Manual, Nutritional Requirements of Dairy Cattle [http://www.merckvetmanual.com/mvm/management_and_nutrition/nutrition_dairy_cattle/nutritional_requirements_of_dairy_cattle.html].

V. Ravindran, Poultry feed availability and nutrition in developing countries: alternative feedstuffs for use in poultry feed formulation FAO Poultry Development Review [www. fao. org/docrep/013/al7 06e/al706e00].

Published

2022-10-24

How to Cite

Asantewah Nkansah, M. ., Opoku, F. ., & Yigah, E. . (2022). Exploring the potential of waste fish scales as feed for livestock. Chemija, 33(3). Retrieved from http://opensubmissionsystem.com/index.php/chemija/article/view/124

Issue

Section

Environmental Sciences